
Mutually-Recursive	Data	
Definitions

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	6.4

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative	Commons	 Attribution-NonCommercial 3.0	Unported License.

Mutually	Recursive	Data	Definitions

• Sometimes	two	kinds	of	data	are	intertwined
• In	this	lesson,	we'll	consider	an	easy	example:	
alternating	lists

• An	alternating	list	is	a	list	whose	elements	
alternate	between	numbers	and	strings

2

Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to	
– recognize	information	that	should	be	represented	
as	an	alternating	list

– write	a	data	definition	for	an	alternating	list
– explain	why	templates	for	alternating	lists	come	in	
pairs

3

Alternating	Lists

• Let's	write	a	data	definition	for	lists	whose	
elements	alternate	between	numbers	and	
strings.

4

Data	Definitions
;; A ListOfAlternatingNumbersAndStrings
(LANS) is one of:

;; -- empty
;; -- (cons Number LASN)

;; A ListOfAlternatingStringsAndNumbers
(LASN) is one of:

;; -- empty
;; -- (cons String LANS)

5

A	LANS is	a	list	of	alternating	numbers	and	strings,	starting	with	a	number.	 	A	LASN
is	a	list	of	alternating	numbers	and	strings,	 starting	with	a	string.		Either	can	be	
empty.		Note	that	the	rest	of	a	non-empty	LANS is	a	LASN,	and	vice-versa.

Examples
empty is a LASN

(cons 11 empty) is a LANS
(cons "foo" (cons 11 empty)) is a LASN

(cons 23 (cons "foo" (cons 11 empty))) is a LANS
(cons "bar" (cons 23 (cons "foo" (cons 11 empty)))) is a LASN

6

These	data	definitions	are	mutually	
recursive

;; A ListOfAlternatingNumbersAndStrings
(LANS) is one of:

;; -- empty
;; -- (cons Number LASN)

;; A ListOfAlternatingStringsAndNumbers
(LASN) is one of:

;; -- empty
;; -- (cons String LANS)

7

The	definition	 of	a	LANS depends	
on	LASN,	and	the	definition	 of	a	
LASN depends	on	LANS.

This	is	mutual	recursion

LASN LANS

8

defined	in	terms	of	

defined	in	terms	of	

The	template	recipe
Question Answer

Does	the	data	definition	 distinguish	
among	different	subclasses	of	data?

Your	template	needs	as	many	cond
clauses	as	subclasses	that	the	data	
definition	 distinguishes.

How	do	the	subclasses	differ	from	each	
other?

Use	the	differences	 to	formulate	a	
condition	per	clause.

Do	any	of	the	clauses	deal	with	structured	
values?

If	so,	add	appropriate	selector	expressions	
to	the	clause.

Does	the	data	definition	 use	self-
references?

Formulate	``natural	recursions''	for	the	
template	to	represent	the	self-references	
of	the	data	definition.

Do	any	of	the	fields	contain	compound or	
mixed	data?

If	the	value	of	a	field	is	a	foo, add	a	call	to	
a	foo-fn to	use	it.

9

The	template	recipe	doesn't	need	to	change

Templates	come	in	pairs
;; lans-fn : LANS -> ??
;; (define (lans-fn lans)
;; (cond
;; [(empty? lans) ...]
;; [else (...
;; (first lans)
;; (lasn-fn (rest lans)))]))

;; lasn-fn : LASN -> ??
;; (define (lasn-fn lasn)
;; (cond
;; [(empty? lasn) ...]
;; [else (...
;; (first lasn)
;; (lans-fn (rest lasn)))]))

10

Here	are	the	templates	for	LANS
and	LASN.	Observe	the	recursive	
calls,	in	red.

Templates	are	mutually	recursive
;; lans-fn : LANS -> ??
;; (define (lans-fn lans)
;; (cond
;; [(empty? lans) ...]
;; [else (...
;; (first lans)
;; (lasn-fn (rest lans)))]))

;; ;; lasn-fn : LASN -> ??
;; (define (lasn-fn lasn)
;; (cond
;; [(empty? lasn) ...]
;; [else (...
;; (first lasn)
;; (lans-fn (rest lasn)))]))

11

This	is	mutual	recursion

lasn-fn lans-fn

12

defined	in	terms	of	

defined	in	terms	of	

Here's	that	same	
picture,	this	time	
describing	 the	
recursive	calls	in	
the	template.

The	template	questions
;; lans-fn : LANS -> ??
;; (define (lans-fn lans)
;; (cond
;; [(empty? lans) ...]
;; [else (...
;; (first lans)
;; (lasn-fn (rest lans)))]))

;; ;; lasn-fn : LASN -> ??
;; (define (lasn-fn lasn)
;; (cond
;; [(empty? lasn) ...]
;; [else (...
;; (first lasn)
;; (lans-fn (rest lasn)))]))

13

What	is	the	answer	for	the	
empty	LANS?

If	you	knew	the	answer	for	the	
LASN	inside	the	LANS,	what	
would	the	answer	be	for	the	

whole	LANS?

What	is	the	answer	for	the	
empty	LASN?

If	you	knew	the	answer	for	the	
LANS	inside	the	LASN,	what	
would	the	answer	be	for	the	

whole	LASN?
As	usual,	we	have	one	
question	 for	each	blank	

in	the	template.

One	function,	one	task

• Each	function	deals	with	exactly	one	data	
definition.

• So	functions	will	come	in	pairs
• Write		contracts	and	purpose	statements	
together,	or

• Write	one,	and	the	other	one	will	appear	as	a	
wishlist function

14

Example

lans-sum : LANS -> Number
Returns the sum of all the numbers
in the given Lans

lasn-sum : LASN -> Number
Returns the sum of all the numbers
in the given Lasn

15

Here's	an	example	of	a	pair	of	
functions	 that	should	 go	together.

Examples
(lans-sum
(cons 23
(cons "foo"
(cons 11 empty)))) = 34

(lasn-sum
(cons "bar"
(cons 23
(cons "foo"
(cons 11 empty))))) = 34

16

And	here	are	some	
examples	for	our	two	
functions.	 	Observe	
that	lans-sum is	

applied	 to	a	LANS,	
and	lasn-sum is	

applied	 to	a	LASN.

Strategy	and		Function	Definitions
;; strategy: Use template for LANS and LASN
;; lans-sum : LANS -> Number
(define (lans-sum lans)
(cond
[(empty? lans) 0]
[else (+

(first lans)
(lasn-sum (rest lans)))]))

;; lasn-sum : LASN -> Number
(define (lasn-sum lasn)
(cond
[(empty? lasn) 0]
[else (lans-sum (rest lasn))]))

17

We	apply	the	template	by	
filling	 in	each	of	the	four	blanks	

with	the	answer	to	the	
corresponding	 template	

question.

What	are	alternating	lists	good	for?

18

???
Information

???

Alternating	
Lists

representation

interpretation

Answer:	Not	much!		Don't	use	
them!	

But	they	make	a	good	
example	of	mutually-
recursive	data	definitions

Summary

• You	should	now	be	able	to:
– recognize	information	that	should	be	represented	
as	an	alternating	list

– write	a	data	definition	for	an	alternating	list
– explain	why	templates	for	alternating	lists	come	in	
pairs

19

Next	Steps

• Study	the	file	06-4-lasns.rkt
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	6.4
• Go	on	to	the	next	lesson

20

